Smartphone GNSS Performance in an Urban Scenario with RAIM Application

Author:

Angrisano Antonio,Gaglione SalvatoreORCID

Abstract

In an urban scenario, GNSS performance is strongly influenced by gross errors in the measurements, usually related to multipath and non-line-of-sight phenomena. The use of RAIM algorithms is a common approach to solve this issue. A significant amount of the existing GNSS receivers is currently mounted on smart devices, above all, smartphones. A typical drawback of these devices is the unavailability of raw measurements, which does not allow fully exploiting the GNSS potential; in particular, this feature limits the use of RAIM algorithms. Since 2016, for few smart devices, it has been finally possible to access GNSS raw measurements, allowing the implementation of specific algorithms and enabling new services. The Xiaomi Mi 8 is equipped with the Broadcom BCM47755 receiver, able to provide dual-frequency raw measurements from quad-constellation GPS, Glonass, Galileo, BeiDou. In this work, the performance in an urban area of the Xiaomi Mi8 GNSS was analyzed. An important issue of smartphone GNSS is related to the antenna, which is not able to protect from the multipath phenomenon; this issue has a large probability to emerge in hostile environments like urban areas. As a term of comparison, the high-sensitivity receiver NVS NV08C-CSM, connected to a patch antenna, was used. In particular, the considered receivers were placed in the same location, and their positions were estimated in single point positioning, applying a classical RAIM algorithm. An error analysis was carried out, and the obtained results demonstrated the effectiveness of RAIM when applied to Xiaomi Mi8 GNSS measurements.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3