Assessment of GNSS observations and positioning performance from non-flagship Android smartphones

Author:

Bramanto Brian1ORCID,Gumilar Irwan1,Kuswanti Irma A. N.2

Affiliation:

1. Geodesy Research Group, Faculty of Earth Sciences and Technology, Institut Teknologi Bandung , Jalan Ganesa 10 , Bandung , 40135 , Indonesia

2. Geodesy and Geomatics Engineering Study Program , Faculty of Earth Sciences and Technology, Institut Teknologi Bandung , Jalan Ganesa 10 , Bandung , 40135 , Indonesia

Abstract

Abstract Android smartphone has gained attention in precise positioning applications since it can collect raw observable GNSS (Global Navigation Satellite System) data. Some studies have reported that the positioning accuracy may reach the sub-decimeter level. However, these studies mostly rely on a flagship Android smartphone that is made with better internal hardware, while the use of a non-flagship Android smartphone is not reported for this field. In this study, therefore, we explore non-flagship Android smartphones for positioning applications. We assessed the observable data quality and positioning performance of two non-flagship Android GNSS smartphones of a Samsung M21 and a Redmi Note 7. The data quality assessment includes satellite tracking and carrier-to-noise density ratio analysis. Also, the positioning performance was assessed for Single Point Positioning (SPP) and relative positioning methods in static and open-sky conditions. In addition, the residual properties of GNSS measurements were also evaluated. The results were further compared to the high-grade GNSS device. We found that the observable pseudorange and carrier phase measurements from Android smartphones were about 70 % and 36 % of what high-grade GNSS obtained. Furthermore, within a span of 1 h of observations, a considerable amount of cycle slips, amounting to as many as 518 instances, were noted in the observations from Android GNSS devices. While for the carrier-to-noise density ratio in Android smartphones, it was estimated to be about 15 dB-Hz lower than in high-grade GNSS devices. The spread of the residuals for pseudorange and carrier phase from Android smartphones was estimated to be about ±15 and ±6 m, respectively. The 3D positioning error for SPP was estimated to be about 4.7 m, with a position spread reaching tens of meters. At the same time, the 3D positioning error was calculated to be 4.6 m with the estimated standard error at the centimeter level when using the relative positioning method. To improve the positioning performance, applying a C/N0 mask to the observations become the best solution. The 3D positioning error for the relative positioning method reduces to 2.7 m when applying a C/N0 mask of 30 dB-Hz. The observable data quality of non-flagship Android GNSS devices possibly causes relatively poor performance of positioning applications.

Publisher

Walter de Gruyter GmbH

Subject

Earth and Planetary Sciences (miscellaneous),Engineering (miscellaneous),Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3