Real-Time Detection and Correction of Abnormal Errors in GNSS Observations on Smartphones

Author:

Mu Hongbo1,Yu Xianwen1,Aragon-Angel Angela2ORCID,Wang Jiafu1,Wu Yanze1

Affiliation:

1. School of Transportation, Southeast University, Nanjing 211189, China

2. Research Group of Astronomy and Geomatics (gAGE), Universitat Politecnica de Catalunya (UPC), 08034 Barcelona, Spain

Abstract

Smartphones, due to the integration of low-cost GNSS chips and linearly polarized antennas, frequently experience abnormal errors in their observations, particularly during positioning on water surfaces. In response to this issue, this paper proposes a method for detecting and correcting abnormal errors in GNSS observations on smartphones. Firstly, the state and observation equations of the Kalman filter are formulated based on the continuous and smooth characteristics of pseudorange and carrier observations. Secondly, real-time detection of abnormal error occurrence in observations is performed by assessing whether the difference between the predicted and observed values computed by the Kalman filter exceeds a specified threshold. Finally, depending on abnormal errors within the epoch, different strategies are applied for real-time reparation of observations containing anomalies. Two smartphones have been used for static tests on land and kinematic tests on water. Results show that under various environmental conditions, the proposed method effectively enhances the quality of observations on smartphones. Specifically, the method achieved a maximum improvement of 86.03% in pseudorange quality and 84.31% in carrier phase quality. The method proposed in this paper outperformed the State-Based method by approximately 10% on land and by 10–35% on water. It also shows high stability and reliability, particularly in complex environments such as navigation on water.

Funder

National Key R&D Program of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3