Abstract
Online portfolio selection (OLPS) is a procedure for allocating portfolio assets using only past information to maximize an expected return. There have been successful mean reversion strategies that have achieved large excess returns on the traditional OLPS benchmark datasets. We propose a genetic mean reversion strategy that evolves a population of portfolio vectors using a hybrid genetic algorithm. Each vector represents the proportion of the portfolio assets, and our strategy chooses the best vector in terms of the expected returns on every trading day. To test our strategy, we used the price information of the S&P 500 constituents from 2000 to 2017 and compared various strategies for online portfolio selection. Our hybrid genetic framework successfully evolved the portfolio vectors; therefore, our strategy outperformed the other strategies when explicit or implicit transaction costs were incurred.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献