Empirical Analyses of OLMAR Method for Financial Portfolio Selection in Stock Markets

Author:

Umino Kazunori,Kikuchi Takamasa,Kunigami Masaaki,Yamada Takashi,Terano Takao, , , ,

Abstract

The OLMAR method, which stands for the on-line moving average reversion method, is reported to be one of the most powerful among portfolio selection algorithms in the stock markets. In this research, we use intensive statistical and simulation analyses of long-term data on stock market changes to uncover the secrets of why and when the superiority appears. We find that there have been long-lasting fluctuations in the stock markets and that the OLMAR method actively makes use of such characteristics. In this paper, we analyze long-term stock data from Japan and the United States. The analyses confirm the following points. 1) The OLMAR method yields superior returns. 2) By using the moving average divergence rate provided by the OLMAR method, it is possible to detect specific fluctuation characteristics in long-term stock data from Japan and the United States. 3) Superior returns cannot be obtained from data in which specific fluctuation characteristics have been corrected.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference14 articles.

1. B. Li and S. C. H. Hoi, “On-line portfolio selection with moving average reversion,” Proc. of the 29th Int. Conf. on Machine Learning (ICML’12), pp. 563-570, 2012.

2. B. Li et al., “Moving average reversion strategy for on-line portfolio selection,” Artificial Intelligence, Vol.222, pp. 104-123, 2015.

3. B. Li and S. C. H. Hoi, “Online portfolio selection: A survey,” ACM Computing Surveys (CSUR), Vol.46, No.3, Article No.35, 2014.

4. B. Li, D. Sahoo, and S. C. H. Hoi, “OLPS: a toolbox for on-line portfolio selection,” J. of Machine Learning Research, Vol.17, Article No.35, 2016.

5. F. M. Nyikosa, M. A. Osborne, and S. J. Roberts, “Adaptive Bayesian Optimisation for Online Portfolio Selection,” Workshop on Bayesian Optimization at NIPS, 2015.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3