An Approach for a Multi-Period Portfolio Selection Problem by considering Transaction Costs and Prediction on the Stock Market

Author:

Aburto Luis1,Romero-Romero Rodrigo2ORCID,Linfati Rodrigo2ORCID,Escobar John Willmer3ORCID

Affiliation:

1. School of Industrial Engineering, Universidad del Bío-Bío, Concepción, Chile

2. Department of Industrial Engineering, Universidad del Bío-Bío, Concepción, Chile

3. Department of Accounting and Finance, Universidad del Valle, Cali, Colombia

Abstract

This paper addresses a method to solve a multi-period portfolio selection on the stock market. The portfolio problem seeks an investor to trade stocks with a finite budget and a given integer number of stocks to hold in a portfolio. The trade must be performed through a stockbroker that charges its respective transaction cost and has its minimum required trade amount. A mathematical model has been proposed to deal with the constrained problem. The objective function is to find the best risk-return rate; thus, Sharpe Ratio and Treynor Ratio are used as objective functions. The returns are the same for these ratios, but the risks are not Sharpe considering covariance and Treynor systematical risk. The returns are predicted using a Neural Net with Long-Short-Term Memory (LSTM). This neural net is compared with simple forecasting methods through Mean Absolute Percentage Error (MAPE). Computational experiments show the quality prediction performed by LSTM. The heteroskedastic risk is estimated by Generalized Autoregressive Conditional Heteroskedasticity (GARCH), adjusting the variance for every period; this risk measure is used in Sharpe Ratio. The experiment contemplates a weekly portfolio selection with 5 and 10 stocks in 122 weekly periods for each Chilean market ratio. The best portfolio is Sharpe Ratio with ten stocks, performing a 62.28% real return beating the market, represented by the Selective Stock Price Index (IPSA). Even the worst portfolio, Treynor Ratio, overcomes the IPSA cumulative yield with ten stocks.

Funder

Universidad del Bío-Bío

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Reference58 articles.

1. Metodología para la toma de decisiones de inversión en portafolio de acciones utilizando la técnica multicriterio AHP;J. W. Escobar;Contaduría y Administración,2015

2. AHP–TOPSIS methodology for stock portfolio investments;J. A. Vásquez;Risks,2021

3. Análisis y comparativa de los sistemas automáticos de trading frente al trading discrecional;J. D. Río Miño,2015

4. Resolución del problema de carteras de inversión utilizando la heurística de colonia artificial de abejas

5. PORTFOLIO SELECTION*

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Improved Genetic Programming Based Factor Construction for Stock Price Prediction;Communications in Computer and Information Science;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3