Abstract
Due to the complexity of manipulator robots, the trajectory tracking task is very challenging. Most of the current algorithms depend on the robot structure or its number of degrees of freedom (DOF). Furthermore, the most popular methods use a Jacobian matrix that suffers from singularities. In this work, the authors propose a general method to solve the trajectory tracking of robot manipulators using metaheuristic optimization methods. The proposed method can be used to find the best joint configuration to minimize the end-effector position and orientation in 3D, for robots with any number of DOF.
Funder
Consejo Nacional de Ciencia y Tecnología
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献