Trajectory Control of Robotic Manipulator using Metaheuristic Algorithms

Author:

Rawat Devendra1,Gupta Mukul Kumar1,Sharma Abhinav1

Affiliation:

1. Department of Electrical & Electronics Engineering, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India.

Abstract

Robotic manipulators are extremely nonlinear complex and, uncertain systems. They have multi-input multi-output (MIMO) dynamics, which makes controlling manipulators difficult. Robotic manipulators have wide applications in many industries like processes, medicine, and space. Effective control of these manipulators is extremely important to perform these industrial tasks. Researchers are working on the control of robotic manipulators using conventional and intelligent control methods. Conventional control methods are proportional integral and derivative (PID), Fractional order proportional integral and derivative (FOPID), sliding mode control (SMC), and optimal & robust control while intelligent control method includes Artificial Neural network (ANN), Fuzzy logic control (FLC) and metaheuristic optimization algorithms based control schemes. This paper presents the trajectory control of a robotic manipulator using a PID controller. Four different meta-heuristic algorithms namely Sooty tern optimization (STO), Spotted Hyena optimizer (SHO), Atom Search optimization (ASO), and Arithmetic Optimization algorithm (AOA) are used to optimize the gains of PID controller for trajectory control of a two-link robotic manipulator and a novel hybrid sooty tern and particle swarm optimization (STOPSO) has been designed. These optimization techniques are nature-inspired algorithms that give the optimal gain values while minimizing the performance indices. A performance index comprising Integral time absolute error (ITAE) having weights for both links has been considered to achieve the desired trajectory. These optimization techniques are stochastic in nature so statistical analysis and Freidman’s ranking test has been performed to evaluate the effectiveness of these algorithms. The proposed hybrid STOPSO provided a fitness value of 0.04541 and showed a standard deviation of 0.0002. A comparative study of these optimization techniques is presented and as a result, hybrid STOPSO provides the best results with minimum fitness value followed by STO, AOA, ASO, and SHO algorithms.

Publisher

Ram Arti Publishers

Subject

General Engineering,General Business, Management and Accounting,General Mathematics,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3