Abstract
Piezoelectric actuators based on bridge displacement amplifying mechanisms are widely used in precision driving and positioning fields. The classical bridge mechanism relies on structural flexibility to realize the return stroke, which leads to the low positioning accuracy of the actuator. In this paper, a series bridge mechanism is proposed to realize a bidirectional active drive; the return stroke is driven by a piezoelectric stack rather than by the flexibility of the structure. By analyzing the parameter sensitivity of the bridge mechanism, the series actuation of the bridge mechanism is optimized and the static and dynamic solutions are carried out by using the finite element method. Compared with the hysteresis loop of the piezoelectric stack, the displacement curve of the proposed actuator is symmetric, and the maximum nonlinear error is improved. The experimental results show that the maximum driving stroke of the actuator is 129.41 μm, and the maximum nonlinear error is 5.48%.
Funder
National Natural Science Foundation of China
Science and Technology Planning Project of Guangzhou, China
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献