Bidirectional Drive with Inhibited Hysteresis for Piezoelectric Actuators

Author:

Huang Weiqing,Lian JunkaiORCID,An DaweiORCID,Chen Mingyang,Lei Yinfeng

Abstract

Piezoelectric actuators with a flexible displacement amplification structure are widely used in the fields of precision driving and positioning. The displacement curve of conventional piezoelectric actuators is asymmetrical and non-linear, which leads to large non-linear errors and reduced positioning accuracy of these piezoelectric actuators. In this paper, a bidirectional active drive piezoelectric actuator is proposed, which suppresses the hysteresis phenomenon to a certain extent and reduces the non-linear error. Based on the deformation theory of the beam, a theoretical model of the rhombus mechanism was established, and the key parameters affecting the drive performance were analyzed. Then, the static and dynamic characteristics of series piezoelectric actuators were analyzed by the finite element method. A prototype was manufactured and the output performance was tested. The results show that the actuator can achieve a bidirectional symmetric output of amplification displacement, with a maximum value of 91.45 μm and a resolution of 35 nm. In addition, compared with the hysteresis loop of the piezoelectric stack, the nonlinear error is reduced by 62.94%.

Funder

National Natural Science Foundation of China

Science and Technology Planning Project of Guangzhou, China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3