Methods for the Discovery and Identification of Small Molecules Targeting Oxidative Stress-Related Protein–Protein Interactions: An Update

Author:

Wu Xuexuan,Zhang QiuyueORCID,Guo Yuqi,Zhang Hengheng,Guo Xiaoke,You QidongORCID,Wang LeiORCID

Abstract

The oxidative stress response pathway is one of the hotspots of current pharmaceutical research. Many proteins involved in these pathways work through protein–protein interactions (PPIs). Hence, targeting PPI to develop drugs for an oxidative stress response is a promising strategy. In recent years, small molecules targeting protein–protein interactions (PPIs), which provide efficient methods for drug discovery, are being investigated by an increasing number of studies. However, unlike the enzyme–ligand binding mode, PPIs usually exhibit large and dynamic binding interfaces, which raise additional challenges for the discovery and optimization of small molecules and for the biochemical techniques used to screen compounds and study structure–activity relationships (SARs). Currently, multiple types of PPIs have been clustered into different classes, which make it difficult to design stationary methods for small molecules. Deficient experimental methods are plaguing medicinal chemists and are becoming a major challenge in the discovery of PPI inhibitors. In this review, we present current methods that are specifically used in the discovery and identification of small molecules that target oxidative stress-related PPIs, including proximity-based, affinity-based, competition-based, structure-guided, and function-based methods. Our aim is to introduce feasible methods and their characteristics that are implemented in the discovery of small molecules for different types of PPIs. For each of these methods, we highlight successful examples of PPI inhibitors associated with oxidative stress to illustrate the strategies and provide insights for further design.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province of China

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3