Transcriptomic and Widely Targeted Metabolomic Approach Identified Diverse Group of Bioactive Compounds, Antiradical Activities, and Their Associated Genes in Six Sugarcane Varieties

Author:

Rao Muhammad JunaidORCID,Duan MingzhengORCID,Wang Jihong,Han Shijian,Ma Li,Mo Xinyi,Li Min,Hu Lihua,Wang Lingqiang

Abstract

Sugarcane is cultivated mainly for its high sucrose content but it can also produce many metabolites with promising antioxidant potential. However, very few studies have been reported on the biosynthesis of metabolites in sugarcane to date. In this study, we have identified a wide range of amino acids and organic acids in the rind of six sugarcane varieties by the LC-MS/MS method. A total number of 72 amino acids and 55 organic acid compounds were characterized; among these, 100 were reported for the first time. Moreover, 13 amino acids and seven organic acids were abundantly distributed in all varieties tested and considered major amino acids and organic acids in sugarcane. The variety Taitang134 (F134) showed the highest content of total amino acids, whereas the varieties ROC16 and Yuetang93/159 (YT93/159) had maximum content of organic acids. The amino acids of the rind extract presented higher antioxidant capacity than the organic acids of the rind extract. In addition, the transcriptomic and metabolic integrated analysis highlighted some candidate genes associated with amino acid biosynthesis in sugarcane. We selected a transcription factor gene, MYB(t), and over-expressed it in Arabidopsis. The transgenic plants showed a higher accumulation of amino acids with higher antiradical activity compared with the wild-type Arabidopsis plants. Thus, we characterize a wide range of amino acids and organic acids and their antiradical activities in different sugarcane varieties and present candidate genes that can be potentially valuable for the genetic improvement of metabolites in sugarcane bagasse

Funder

Natural Science Foundation of Guangxi

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Cell Biology,Clinical Biochemistry,Molecular Biology,Biochemistry,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3