Metabolomic and Transcriptomic Analyses Provide New Insights into Health-Promoting Metabolites from Cannabis Seeds Growing in the Bama Region of China

Author:

Duan Mingzheng12ORCID,Rao Muhammad Junaid13ORCID,Li Qing1,Zhao Falin1,Fan Hongzeng1ORCID,Li Bo1,He Dandan1,Han Shijian1,Zhang Jiangjiang4,Wang Lingqiang1ORCID

Affiliation:

1. State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China

2. College of Agronomy and Life Sciences, Zhaotong University, Zhaotong 657000, China

3. Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Ministry of Agriculture), Huazhong Agricultural University, Wuhan 430070, China

4. Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518116, China

Abstract

Hemp seeds are consumed in “Bama longevity villages” in China and are believed to contribute to the locals’ longevity. However, the molecular breeding of hemp seeds is limited due to our lack of understanding of molecular regulation and metabolite accumulation at different maturity stages. Here, we conducted metabolomic and transcriptomic analyses of hemp seeds from the Bama region at four maturity stages (S1 to S4). In total, 1231 metabolites of 11 classes were detected in hemp seeds from S1–S4, including 233 flavonoids, 214 phenolic acids, 159 lipids, 118 amino acids and derivatives, 100 alkaloids, 100 organic acids, 71 nucleotides and derivatives, 43 lignans and coumarins, 14 terpenoids, 13 tannins, and 166 others. The metabolomic analysis of hemp seeds (from the Bama region) revealed a higher number of flavonoid metabolites compared with seven other varieties from other regions in China. Hemp seeds are rich in metabolites like cannflavin, trigonelline, citric acid, vitexin, choline alfoscerate, and choline, which may potentially contribute to the longevity of the Bama people. Through transcriptomic and metabolomic analyses, a gradual decrease in the overall expression pattern of genes and metabolite accumulation was observed during seed maturation. Weighted gene co-expression network analysis revealed that two genes (ncbi_115696993 and ncbi_115706674) are involved in regulating main metabolites, while transcription factor association analysis revealed that three transcription factor genes (MYB, NAC, and GRAS) are also involved in regulating the metabolites. The expression pattern of these five candidate genes was further verified by qPCR. Our study provides valuable insights into the metabolic substances during seed maturation and identifies candidate genes that could be utilized for future genetic engineering to enhance the endogenous biosynthesis of health-promoting metabolites in hemp seeds, potentially leading to improved nutritional and medicinal properties.

Funder

Project of Bama County for Talents in Science and Technology

Science Technology and Innovation Commission of Shenzhen Municipality of China

Innovation Program of Chinese Academy of Agricultural Sciences and the Elite Young Scientists Program of CAAS

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3