Observation of Near-Inertial Oscillations Induced by Energy Transformation during Typhoons

Author:

Hou Huaqian,Yu Fei,Nan Feng,Yang Bing,Guan Shoude,Zhang Yuanzhi

Abstract

Three typhoon events were selected to examine the impact of energy transformation on near-inertial oscillations (NIOs) using observations from a subsurface mooring, which was deployed at 125° E and 18° N on 26 September 2014 and recovered on 11 January 2016. Almost 16 months of continuous observations were undertaken, and three energetic NIO events were recorded, all generated by passing typhoons. The peak frequencies of these NIOs, 0.91 times of the local inertial frequency f, were all lower than the local inertial frequency f. The estimated vertical group velocities (Cgz) of the three NIO events were 11.9, 7.4, and 23.0 m d−1, and were relatively small compared with observations from other oceans (i.e., 100 m d−1). The directions of the horizontal near-inertial currents changed four or five times between the depths of 40 and 800 m in all three NIO events, implying that typhoons in the northwest Pacific usually generate high-mode NIOs. The NIO currents were further decomposed by performing an empirical orthogonal function (EOF) analysis. The first and second EOF modes dominated the NIOs during each typhoon, accounting for more than 50% of the total variance. The peak frequencies of the first two EOF modes were less than f, but those of the third and fourth modes were higher than f. The frequencies of all the modes during non-typhoon periods were more than f. Our analysis indicates that the relatively small downward group velocity was caused by the frequent direction changes of the near-inertial currents with depth.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3