Observation of Near‐Inertial Waves Induced by Typhoon Lan in the Northwestern Pacific: Characteristics, Energy Fluxes and Impact on Diapycnal Mixing

Author:

Yuan Shengming12ORCID,Yan Xiaomei134ORCID,Zhang Linlin134ORCID,Pang Chongguang134ORCID,Hu Dunxin134

Affiliation:

1. Key Laboratory of Ocean Circulation and Waves Institute of Oceanology Chinese Academy of Sciences Qingdao China

2. University of Chinese Academy of Sciences Beijing China

3. Qingdao National Laboratory for Marine Science and Technology Qingdao China

4. Center for Ocean Mega‐Science Chinese Academy of Sciences Qingdao China

Abstract

AbstractBased on mooring observations from October 10 to 5 November 2017 at four stations in the Northwestern Pacific, the characteristics of four strong near‐inertial wave (NIW) packets generated by the typhoon Lan were examined. The wave‐packet analysis revealed that for the NIWs with larger horizontal wavelengths, as their interactions with the background currents were weakened, the observed frequency was close to the intrinsic frequency. The near‐inertial kinetic energy (NIKE) between two cyclonic eddies penetrated deeper (∼620 m) than that in a negative vorticity region. A ray‐tracing model suggested that it was the strong positive vorticity to the north that caused the northward propagating NIWs to be reflected, and then the reflected NIWs were accelerated to propagate downward at ∼70 m depth where the stratification was strongest. In these two cases, furthermore, the efficiency of the downward propagation of NIKE was at a comparable level of 21%–25%. Energy budget analysis indicated that about 5%–25% of the near‐inertial wind work was injected into the upper 50–200 m, approximately 6%–25% of which could be further radiated to the deeper ocean. On average, after the passage of the typhoon Lan, the dissipation rate increased by 3–8 times, and for the enhanced diapycnal mixing, ∼42% of the energy was provided by the typhoon‐induced strong NIWs.

Funder

National Key Research and Development Program of China

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3