SVR-Net: A Sparse Voxelized Recurrent Network for Robust Monocular SLAM with Direct TSDF Mapping

Author:

Lang Rongling1,Fan Ya1,Chang Qing1

Affiliation:

1. School of Electronics and Information Engineering, Beihang University, Beijing 100191, China

Abstract

Simultaneous localization and mapping (SLAM) plays a fundamental role in downstream tasks including navigation and planning. However, monocular visual SLAM faces challenges in robust pose estimation and map construction. This study proposes a monocular SLAM system based on a sparse voxelized recurrent network, SVR-Net. It extracts voxel features from a pair of frames for correlation and recursively matches them to estimate pose and dense map. The sparse voxelized structure is designed to reduce memory occupation of voxel features. Meanwhile, gated recurrent units are incorporated to iteratively search for optimal matches on correlation maps, thereby enhancing the robustness of the system. Additionally, Gauss–Newton updates are embedded in iterations to impose geometrical constraints, which ensure accurate pose estimation. After end-to-end training on ScanNet, SVR-Net is evaluated on TUM-RGBD and successfully estimates poses on all nine scenes, while traditional ORB-SLAM fails on most of them. Furthermore, absolute trajectory error (ATE) results demonstrate that the tracking accuracy is comparable to that of DeepV2D. Unlike most previous monocular SLAM systems, SVR-Net directly estimates dense TSDF maps suitable for downstream tasks with high efficiency of data exploitation. This study contributes to the development of robust monocular visual SLAM systems and direct TSDF mapping.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3