Real-Time 3D Reconstruction of UAV Acquisition System for the Urban Pipe Based on RTAB-Map

Author:

Chen Xinbao1,Zhu Xiaodong1,Liu Chang1

Affiliation:

1. School of Earth Sciences and Spatial Information Engineering, Hunan University of Sciences and Technology, Xiangtan 411201, China

Abstract

In urban underground projects, such as urban drainage systems, the real-time acquisition and generation of 3D models of pipes can provide an important foundation for pipe safety inspection and maintenance. The simultaneous localization and mapping (SLAM) technique, compared to the traditional structure from motion (SfM) reconstruction technique, offers high real-time performance and improves the efficiency of 3D object reconstruction. Underground pipes are situated in complex environments with unattended individuals and often lack natural lighting. To address this, this paper presents a real-time and cost-effective 3D perception and reconstruction system that utilizes an unmanned aerial vehicle (UAV) equipped with Intel RealSense D435 depth cameras and an artificial light-supplementation device. This system carries out real-time 3D reconstruction of underground pipes using the RTAB-Map (real-time appearance-based mapping) method. RTAB-Map is a graph-based visual SLAM method that combines closed-loop detection and graph optimization algorithms. The unique memory management mechanism of RTAB-Map enables synchronous mapping for multiple sessions during UAV flight. Experimental results demonstrate that the proposed system, based on RTAB-Map, exhibits the robustness, textures, and feasibility for 3D reconstruction of underground pipes.

Funder

China Postdoctoral Science Foundation

Hunan Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3