An Adaptive Two-Dimensional Voxel Terrain Mapping Method for Structured Environment

Author:

Zhou Hang1,Ping Peng12,Shi Quan1,Chen Hailong1

Affiliation:

1. School of Transportation and Civil Engineering, Nantong University, Nantong 226019, China

2. School of Aeronautics and Astronautics, Chongqing University, Chongqing 400044, China

Abstract

Accurate terrain mapping information is very important for foot landing planning and motion control in foot robots. Therefore, a terrain mapping method suitable for an indoor structured environment is proposed in this paper. Firstly, by constructing a terrain mapping framework and adding the estimation of the robot’s pose, the algorithm converts the distance sensor measurement results into terrain height information and maps them into the voxel grid, and effectively reducing the influence of pose uncertainty in a robot system. Secondly, the height information mapped into the voxel grid is downsampled to reduce information redundancy. Finally, a preemptive random sample consistency (preemptive RANSAC) algorithm is used to divide the plane from the height information of the environment and merge the voxel grid in the extracted plane to realize the adaptive resolution 2D voxel terrain mapping (ARVTM) in the structured environment. Experiments show that the proposed mapping algorithm reduces the error of terrain mapping by 62.7% and increases the speed of terrain mapping by 25.1%. The algorithm can effectively identify and extract plane features in a structured environment, reducing the complexity of terrain mapping information, and improving the speed of terrain mapping.

Funder

National Natural Science Foundation of China

Natural Science Foundation for Colleges and Universities in Jiangsu Province

333 Talent Technology Research Project of Jiangsu

Nantong social livelihood science and technology project

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3