A generalized model of cardiac surface motion for evaluating left anterior descending coronary artery dose in left breast cancer radiotherapy

Author:

Deng Yongjin1,Qiu Minmin1,Li Yangchan1,Wang Chaoyang1,Zhong Jiajian1,Xiao Zhenhua1,Wang Chengtao1,Chen Ruiwan1

Affiliation:

1. The First Affiliated Hospital Sun Yat‐Sen University Guangzhou Guangdong Province PR China

Abstract

AbstractBackgroundRetrospective studies indicate that radiation damage to left anterior descending coronary artery (LAD) may be critical for late‐stage radiation‐induced cardiac morbidity. Developing a method that accurately depicts LAD motion and perform dose assessment is crucial.PurposeTo construct a generalized cardiac surface motion model for LAD dose assessment in left breast cancer radiotherapy.MethodsCine MRI of 25 cases were divided into training and testing sets for model construction, and five external cases were gathered for generalization validation. Motion prediction from average intensity projection images (AIP) surface point cloud to that of each phase was realized by mapping the relationship between datum points and corresponding points with statistical shape modeling (SSM). Root mean square error (RMSE) for predicted corresponding points and Euclidean distance (ED) for predicted surface point cloud were used to assess model's accuracy. LAD dose assessment for 10 left breast cancer radiotherapy cases was perform by model application.ResultsThe RMSE in testing cases and external cases were 0.209 ± 0.020 mm to 0.841 ± 0.074 mm and 0.895 ± 0.093 mm to 1.912 ± 0.138 mm, respectively; while the ED were 1.399 ± 0.029 mm to 1.658 ± 0.100 mm, 1.571 ± 0.080 mm to 1.779 ± 0.104 mm, respectively, proving the generalized model's high accuracy. The volume of LAD characterizing motion range (WPLAD) (2.392 ± 0.639 cm3) was approximately twice that of LAD from superimposed images (SPLAD) (0.927 ± 0.326 cm3) with < 0.05, and the former's Dmax (3582.06 ± 575.92 cGy) was significantly larger than latter's (3222.71 ± 665.37 cGy) (< 0.05). While WPLAD's Dmean (1408.06 ± 413.06 cGy) was slightly smaller than that of SPLAD (1504.15 ± 448.03 cGy), the difference did not reach statistical significance (p > 0.05). WPLAD's V20 (23.42% ± 16.62%) was less than SPLAD's (29.18% ± 21.07%) with p < 0.05, but their comparison in V30 and V40 did not yield statistically significant results. It implies the conventional LAD dose assessment ignores motion impact and may not be justified.ConclusionsThe generalized cardiac surface motion model informs LAD dose accurate assessment in left breast cancer radiotherapy.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3