Abstract
In the last few years, deep reinforcement learning has been proposed as a method to perform online learning in energy-efficiency scenarios such as HVAC control, electric car energy management, or building energy management, just to mention a few. On the other hand, quantum machine learning was born during the last decade to extend classic machine learning to a quantum level. In this work, we propose to study the benefits and limitations of quantum reinforcement learning to solve energy-efficiency scenarios. As a testbed, we use existing energy-efficiency-based reinforcement learning simulators and compare classic algorithms with the quantum proposal. Results in HVAC control, electric vehicle fuel consumption, and profit optimization of electrical charging stations applications suggest that quantum neural networks are able to solve problems in reinforcement learning scenarios with better accuracy than their classical counterpart, obtaining a better cumulative reward with fewer parameters to be learned.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction
Reference45 articles.
1. Deep Reinforcement Learning: Fundamentals, Research, and Applications;Dong,2020
2. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play
3. Agent57: Outperforming the Atari Human Benchmark;Badia;arXiv,2020
4. End-to-End Training of Deep Visuomotor Policies;Levine;arXiv,2016
5. Deep Reinforcement Learning framework for Autonomous Driving
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献