Automatic evolutionary design of quantum rule-based systems and applications to quantum reinforcement learning

Author:

Cuéllar Manuel P.,Pegalajar M. C.,Cano C.

Abstract

AbstractExplainable artificial intelligence is a research topic whose relevance has increased in recent years, especially with the advent of large machine learning models. However, very few attempts have been proposed to improve interpretability in the case of quantum artificial intelligence, and many existing quantum machine learning models in the literature can be considered almost as black boxes. In this article, we argue that an appropriate semantic interpretation of a given quantum circuit that solves a problem can be of interest to the user not only to certify the correct behavior of the learned model, but also to obtain a deeper insight into the problem at hand and its solution. We focus on decision-making problems that can be formulated as classification tasks and propose a method for learning quantum rule-based systems to solve them using evolutionary optimization algorithms. The approach is tested to learn rules that solve control and decision-making tasks in reinforcement learning environments, to provide interpretable agent policies that help to understand the internal dynamics of an unknown environment. Our results conclude that the learned policies are not only highly explainable, but can also help detect non-relevant features of problems and produce a minimal set of rules.

Funder

Ministerio de Ciencia e Innovación

Universidad de Granada

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3