Training deep quantum neural networks

Author:

Beer KerstinORCID,Bondarenko Dmytro,Farrelly TerryORCID,Osborne Tobias J.,Salzmann Robert,Scheiermann Daniel,Wolf RamonaORCID

Abstract

AbstractNeural networks enjoy widespread success in both research and industry and, with the advent of quantum technology, it is a crucial challenge to design quantum neural networks for fully quantum learning tasks. Here we propose a truly quantum analogue of classical neurons, which form quantum feedforward neural networks capable of universal quantum computation. We describe the efficient training of these networks using the fidelity as a cost function, providing both classical and efficient quantum implementations. Our method allows for fast optimisation with reduced memory requirements: the number of qudits required scales with only the width, allowing deep-network optimisation. We benchmark our proposal for the quantum task of learning an unknown unitary and find remarkable generalisation behaviour and a striking robustness to noisy training data.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry

Reference46 articles.

1. Goodfellow, I., Bengio, Y. & Courville, A. Deep Learning (MIT Press, 2016).

2. Nielsen, M. A. Neural Networks and Deep Learning (Determination Press, 2015).

3. Jordan, M. I. & Mitchell, T. M. Machine learning: trends, perspectives, and prospects. Science 349, 255–260 (2015).

4. Bishop, C. Pattern Recognition and Machine Learning. Information Science and Statistics (Springer-Verlag, 2006).

5. Prati, E., Rotta, D., Sebastiano, F. & Charbon, E. From the quantum Moore’s law toward silicon based universal quantum computing. in 2017 IEEE ICRC (2017).

Cited by 366 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quantum neural networks for power flow analysis;Electric Power Systems Research;2024-10

2. Quantum Hopfield model with dilute memories;Physical Review A;2024-09-13

3. Quantum Computational Intelligence Techniques: A Scientometric Mapping;Archives of Computational Methods in Engineering;2024-09-07

4. Continuous evolution for efficient quantum architecture search;EPJ Quantum Technology;2024-09-06

5. Encoding optimization for quantum machine learning demonstrated on a superconducting transmon qutrit;Quantum Science and Technology;2024-09-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3