Modeling and Analysis of a Reconfigurable Rover for Improved Traversing over Soft Sloped Terrains

Author:

Lyu Shipeng1,Zhang Wenyao1,Yao Chen1,Zhu Zheng123,Jia Zhenzhong123ORCID

Affiliation:

1. Department of Mechanical and Energy Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China

2. Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Shenzhen 518055, China

3. Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Shenzhen 518055, China

Abstract

Adjusting the roll angle of a rover’s body is a commonly used strategy to improve its traversability over sloped terrains. However, its range of adjustment is often limited, due to constraints imposed by the rover design and geometry factors such as suspension, chassis, size, and suspension travel. In order to improve the rover’s traversability under these constraints, this paper proposes a reconfigurable rover design with a two-level (sliding and rolling) mechanism to adjust the body’s roll angle. Specifically, the rolling mechanism is a bionic structure, akin to the human ankle joint which can change the contact pose between the wheel and the terrain. This novel adjustment mechanism can modulate the wheel–terrain contact pose, center-of-mass projection over the supporting polygon, wheel load, and the rover driving mode. Combining the wheel–load model and terramechanics-based wheel–terrain interaction model, we develop an integrated model to describe the system dynamics, especially the relationship between rover pose and wheel slippage parameters. Using this model, we develop an associated attitude control strategy to calculate the desired rover pose using particle swarm algorithm while considering the slip rate and angle constraints. We then adjust the sliding and rolling servo angles accordingly for slope traversing operations. To evaluate the proposed design and control strategies, we conduct extensive simulation and experimental studies. The results indicate that our proposed rover design and associated control strategy can double the maximum slope angles that the rover can negotiate, resulting in significantly improved traversability over soft sloped terrains.

Funder

Science, Technology and Innovation Commission of Shenzhen Municipality

National Science Foundation of China

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3