Affiliation:
1. Department of Mechanical and Energy Engineering, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
2. Shenzhen Key Laboratory of Biomimetic Robotics and Intelligent Systems, Shenzhen 518055, China
3. Guangdong Provincial Key Laboratory of Human-Augmentation and Rehabilitation Robotics in Universities, Shenzhen 518055, China
Abstract
Adjusting the roll angle of a rover’s body is a commonly used strategy to improve its traversability over sloped terrains. However, its range of adjustment is often limited, due to constraints imposed by the rover design and geometry factors such as suspension, chassis, size, and suspension travel. In order to improve the rover’s traversability under these constraints, this paper proposes a reconfigurable rover design with a two-level (sliding and rolling) mechanism to adjust the body’s roll angle. Specifically, the rolling mechanism is a bionic structure, akin to the human ankle joint which can change the contact pose between the wheel and the terrain. This novel adjustment mechanism can modulate the wheel–terrain contact pose, center-of-mass projection over the supporting polygon, wheel load, and the rover driving mode. Combining the wheel–load model and terramechanics-based wheel–terrain interaction model, we develop an integrated model to describe the system dynamics, especially the relationship between rover pose and wheel slippage parameters. Using this model, we develop an associated attitude control strategy to calculate the desired rover pose using particle swarm algorithm while considering the slip rate and angle constraints. We then adjust the sliding and rolling servo angles accordingly for slope traversing operations. To evaluate the proposed design and control strategies, we conduct extensive simulation and experimental studies. The results indicate that our proposed rover design and associated control strategy can double the maximum slope angles that the rover can negotiate, resulting in significantly improved traversability over soft sloped terrains.
Funder
Science, Technology and Innovation Commission of Shenzhen Municipality
National Science Foundation of China
Subject
Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献