Deep CNN-Based Static Modeling of Soft Robots Utilizing Absolute Nodal Coordinate Formulation

Author:

El-Hussieny Haitham1ORCID,Hameed Ibrahim A.2ORCID,Nada Ayman A.1ORCID

Affiliation:

1. Department of Mechatronics and Robotics Engineering, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt

2. Department of ICT and Natural Sciences, Norwegian University of Science and Technology, 7034 Trondheim, Norway

Abstract

Soft continuum robots, inspired by the adaptability and agility of natural soft-bodied organisms like octopuses and elephant trunks, present a frontier in robotics research. However, exploiting their full potential necessitates precise modeling and control for specific motion and manipulation tasks. This study introduces an innovative approach using Deep Convolutional Neural Networks (CNN) for the inverse quasi-static modeling of these robots within the Absolute Nodal Coordinate Formulation (ANCF) framework. The ANCF effectively represents the complex non-linear behavior of soft continuum robots, while the CNN-based models are optimized for computational efficiency and precision. This combination is crucial for addressing the complex inverse statics problems associated with ANCF-modeled robots. Extensive numerical experiments were conducted to assess the performance of these Deep CNN-based models, demonstrating their suitability for real-time simulation and control in statics modeling. Additionally, this study includes a detailed cross-validation experiment to identify the most effective model architecture, taking into account factors such as the number of layers, activation functions, and unit configurations. The results highlight the significant benefits of integrating Deep CNN with ANCF models, paving the way for advanced statics modeling in soft continuum robotics.

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3