Multi-Modal Enhancement Transformer Network for Skeleton-Based Human Interaction Recognition

Author:

Hu Qianshuo1ORCID,Liu Haijun1ORCID

Affiliation:

1. School of Microelectronics and Communication Engineering, Chongqing University, Chongqing 400044, China

Abstract

Skeleton-based human interaction recognition is a challenging task in the field of vision and image processing. Graph Convolutional Networks (GCNs) achieved remarkable performance by modeling the human skeleton as a topology. However, existing GCN-based methods have two problems: (1) Existing frameworks cannot effectively take advantage of the complementary features of different skeletal modalities. There is no information transfer channel between various specific modalities. (2) Limited by the structure of the skeleton topology, it is hard to capture and learn the information about two-person interactions. To solve these problems, inspired by the human visual neural network, we propose a multi-modal enhancement transformer (ME-Former) network for skeleton-based human interaction recognition. ME-Former includes a multi-modal enhancement module (ME) and a context progressive fusion block (CPF). More specifically, each ME module consists of a multi-head cross-modal attention block (MH-CA) and a two-person hypergraph self-attention block (TH-SA), which are responsible for enhancing the skeleton features of a specific modality from other skeletal modalities and modeling spatial dependencies between joints using the specific modality, respectively. In addition, we propose a two-person skeleton topology and a two-person hypergraph representation. The TH-SA block can embed their structural information into the self-attention to better learn two-person interaction. The CPF block is capable of progressively transforming the features of different skeletal modalities from low-level features to higher-order global contexts, making the enhancement process more efficient. Extensive experiments on benchmark NTU-RGB+D 60 and NTU-RGB+D 120 datasets consistently verify the effectiveness of our proposed ME-Former by outperforming state-of-the-art methods.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3