Generalized Pose Decoupled Network for Unsupervised 3D Skeleton Sequence-Based Action Representation Learning

Author:

Liu Mengyuan1,Meng Fanyang2,Liang Yongsheng3

Affiliation:

1. Key Laboratory of Machine Perception, Peking University, Shenzhen Graduate School, Shenzhen, China.

2. Peng Cheng Laboratory, Shenzhen, China.

3. Harbin Institute of Technology, Harbin, China.

Abstract

Human action representation is derived from the description of human shape and motion. The traditional unsupervised 3-dimensional (3D) human action representation learning method uses a recurrent neural network (RNN)-based autoencoder to reconstruct the input pose sequence and then takes the midlevel feature of the autoencoder as representation. Although RNN can implicitly learn a certain amount of motion information, the extracted representation mainly describes the human shape and is insufficient to describe motion information. Therefore, we first present a handcrafted motion feature called pose flow to guide the reconstruction of the autoencoder, whose midlevel feature is expected to describe motion information. The performance is limited as we observe that actions can be distinctive in either motion direction or motion norm. For example, we can distinguish “sitting down” and “standing up” from motion direction yet distinguish “running” and “jogging” from motion norm. In these cases, it is difficult to learn distinctive features from pose flow where direction and norm are mixed. To this end, we present an explicit pose decoupled flow network (PDF-E) to learn from direction and norm in a multi-task learning framework, where 1 encoder is used to generate representation and 2 decoders are used to generating direction and norm, respectively. Further, we use reconstructing the input pose sequence as an additional constraint and present a generalized PDF network (PDF-G) to learn both motion and shape information, which achieves state-of-the-art performances on large-scale and challenging 3D action recognition datasets including the NTU RGB+D 60 dataset and NTU RGB+D 120 dataset.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Applied Mathematics,General Mathematics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3