YOLOv5-MS: Real-Time Multi-Surveillance Pedestrian Target Detection Model for Smart Cities

Author:

Song Fangzheng1,Li Peng2

Affiliation:

1. College of Information Science and Engineering, Henan University of Technology, Zhengzhou 450001, China

2. Beijing Institute of Technology, Beijing 100081, China

Abstract

Intelligent video surveillance plays a pivotal role in enhancing the infrastructure of smart urban environments. The seamless integration of multi-angled cameras, functioning as perceptive sensors, significantly enhances pedestrian detection and augments security measures in smart cities. Nevertheless, current pedestrian-focused target detection encounters challenges such as slow detection speeds and increased costs. To address these challenges, we introduce the YOLOv5-MS model, an YOLOv5-based solution for target detection. Initially, we optimize the multi-threaded acquisition of video streams within YOLOv5 to ensure image stability and real-time performance. Subsequently, leveraging reparameterization, we replace the original BackBone convolution with RepvggBlock, streamlining the model by reducing convolutional layer channels, thereby enhancing the inference speed. Additionally, the incorporation of a bioinspired “squeeze and excitation” module in the convolutional neural network significantly enhances the detection accuracy. This module improves target focusing and diminishes the influence of irrelevant elements. Furthermore, the integration of the K-means algorithm and bioinspired Retinex image augmentation during training effectively enhances the model’s detection efficacy. Finally, loss computation adopts the Focal-EIOU approach. The empirical findings from our internally developed smart city dataset unveil YOLOv5-MS’s impressive 96.5% mAP value, indicating a significant 2.0% advancement over YOLOv5s. Moreover, the average inference speed demonstrates a notable 21.3% increase. These data decisively substantiate the model’s superiority, showcasing its capacity to effectively perform pedestrian detection within an Intranet of over 50 video surveillance cameras, in harmony with our stringent requisites.

Publisher

MDPI AG

Subject

Molecular Medicine,Biomedical Engineering,Biochemistry,Biomaterials,Bioengineering,Biotechnology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3