Analysis of Land Use and Land Cover Using Machine Learning Algorithms on Google Earth Engine for Munneru River Basin, India

Author:

Loukika Kotapati NarayanaORCID,Keesara Venkata ReddyORCID,Sridhar VenkataramanaORCID

Abstract

The growing human population accelerates alterations in land use and land cover (LULC) over time, putting tremendous strain on natural resources. Monitoring and assessing LULC change over large areas is critical in a variety of fields, including natural resource management and climate change research. LULC change has emerged as a critical concern for policymakers and environmentalists. As the need for the reliable estimation of LULC maps from remote sensing data grows, it is critical to comprehend how different machine learning classifiers perform. The primary goal of the present study was to classify LULC on the Google Earth Engine platform using three different machine learning algorithms—namely, support vector machine (SVM), random forest (RF), and classification and regression trees (CART)—and to compare their performance using accuracy assessments. The LULC of the study area was classified via supervised classification. For improved classification accuracy, NDVI (normalized difference vegetation index) and NDWI (normalized difference water index) indices were also derived and included. For the years 2016, 2018, and 2020, multitemporal Sentinel-2 and Landsat-8 data with spatial resolutions of 10 m and 30 m were used for the LULC classification. ‘Water bodies’, ‘forest’, ‘barren land’, ‘vegetation’, and ‘built-up’ were the major land use classes. The average overall accuracy of SVM, RF, and CART classifiers for Landsat-8 images was 90.88%, 94.85%, and 82.88%, respectively, and 93.8%, 95.8%, and 86.4% for Sentinel-2 images. These results indicate that RF classifiers outperform both SVM and CART classifiers in terms of accuracy.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3