Spatial Prediction of Erosion Risk of a Small Mountainous Watershed Using RUSLE: A Case-Study of the Palar Sub-Watershed in Kodaikanal, South India

Author:

Sujatha Evangelin,Sridhar VenkataramanaORCID

Abstract

An erosion model using the Revised Universal Soil Loss Equation (RUSLE) equation derived from the Advanced Spaceborne Thermal Emission and Reflection Global Digital Elevation Model (ASTER G-DEM) and LANDSAT 8 is presented in the study. This model can be a cost-effective, quick and less labor-intensive tool for assessing erosion in small watersheds. It can also act as a vital input for the primary assessment of environmental degradation in the region, and can aid the formulation of watershed development planning strategies. The Palar River, which drains into Shanmukha Nadi, is a small mountain watershed. The town of Kodaikanal, a popular tourist attraction in Tamilnadu, forms part of this sub-watershed. This quaint, hill-town has been subjected to intense urbanization and exhaustive changes in its land use practices for the past decade. The consequence of this change is manifested in the intense environmental degradation of the region, which results in problems such as increased numbers of landslides, intense soil erosion, forest fires and land degradation. The nature of the terrain, high precipitation, and intense agriculture exponentially increase the rate of soil erosion. Spatial prediction of soil erosion is thereby a valuable and mandatory tool for sustainable land use practices and economic development of the region. A comprehensive methodology is employed to predict the spatial variation of soil erosion using the revised soil loss equation in a geographic information system (GIS) platform. The soil erosion susceptibility map shows a maximum annual soil loss of 3345 Mg·ha−1·y−1, which correlates with scrub forests, degraded forests, steep slopes, high drainage density and shifting cultivation practices. The erosion map shows that the central region is subjected to intense erosion while the inhabited southern part is less prone to erosion. A small patch of severe soil loss is also visible on the eastern part of the northern fringe. About 4% of the sub-watershed is severely affected by soil erosion and 18% falls within a moderate erosion zone. The growing demand for land and infrastructure development forces the shift of urbanization and agriculture to these less-managed spaces. In light of this scenario, the spatial distribution of erosion combined with terrain and hydro-morphometry can aid in sustainable development and promote healthy land use practices in the region.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3