Comparison of Three Machine Learning Algorithms Using Google Earth Engine for Land Use Land Cover Classification
Author:
Funder
King Saud University
Publisher
Elsevier BV
Subject
Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Animal Science and Zoology,Ecology
Reference71 articles.
1. Land cover and land use classification performance of machine learning algorithms in a boreal landscape using Sentinel-2 data;Abdi;GIScience Remote Sensing,2020
2. Land cover classification from fused DSM and UAV images using convolutional neural networks;Al-Najjar;Remote Sensing,2019
3. A comparative study of ALOS-2 PALSAR and landsat-8 imagery for land cover classification using maximum likelihood classifier;Ali;Egyptian Journal of Remote Sensing and Space Sciences,2018
4. Comprehensive genomic analysis of Bacillus paralicheniformis strain BP9, pan-genomic and genetic basis of biocontrol mechanism;Asif;Computational and Structural Biotechnology Journal,2023
5. Comparison between random forest and support vector machine algorithms for LULC classification;AVCI;International Journal of Engineering Geosciences,2021
Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Evaluating machine learning approaches for aboveground biomass prediction in fragmented high-elevated forests using multi-sensor satellite data;Remote Sensing Applications: Society and Environment;2024-11
2. Comparative analysis of machine learning models for predicting PM2.5 concentrations using meteorological and chemical indicators;Journal of Atmospheric and Solar-Terrestrial Physics;2024-10
3. Remote Sensing-Based Assessments of Socioeconomic Factors for Urban Ecological Resilience in the Semi-Arid Region;Rangeland Ecology & Management;2024-09
4. Evaluation of Land Use Land Cover Changes in Response to Land Surface Temperature With Satellite Indices and Remote Sensing Data;Rangeland Ecology & Management;2024-09
5. Perception study of urban green spaces in Singapore urban parks: Spatio-temporal evaluation and the relationship with land cover;Urban Forestry & Urban Greening;2024-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3