Abstract
Accurate identification of urban land use and land cover (LULC) is important for successful urban planning and management. Although previous studies have explored the capabilities of machine learning (ML) algorithms for mapping urban LULC, identifying the best algorithm for extracting specific LULC classes in different time periods and locations remains a challenge. In this research, three machine learning algorithms were employed on a cloud-based system to categorize urban land use of Kabul city through satellite images from Landsat-8 and Sentinel-2 taken in 2023. The most advanced method of generating accurate and informative LULC maps from various satellite data and presenting accurate outcomes is the machine learning algorithm in Google Earth Engine (GEE). The objective of the research was to assess the precision and efficiency of various machine learning techniques, such as random forest (RF), support vector machine (SVM), and classification and regression tree (CART), in producing dependable LULC maps for urban regions by analyzing optical satellite images of sentinel and Landsat taken in 2023. The urban area was divided into five classes: built-up area, vegetation, bare-land, soil, and water bodies. The accuracy and validation of all three algorithms were evaluated. The RF classifier showed the highest overall accuracy of 93.99% and 94.42% for Landsat-8 and Sentinel-2, respectively, while SVM and CART had lower overall accuracies of 87.02%, 81.12%, and 91.52%, 87.77%, with Landsat-8 and Sentinel-2, respectively. The results of the present study revealed that in this classification and comparison, RF performed better than SVM and CART for classifying urban territory for Landsat-8 and Sentinel-2 using GEE. Furthermore, the study highlights the importance of comparing the performance of different algorithms before selecting one and suggests that using multiple methods simultaneously can lead to the most precise map.
Publisher
European Open Science Publishing