U-Net-Based Foreign Object Detection Method Using Effective Image Acquisition System: A Case of Almond and Green Onion Flake Food Process

Author:

Son Guk-Jin,Kwak Dong-HoonORCID,Park Mi-KyungORCID,Kim Young-Duk,Jung Hee-ChulORCID

Abstract

Supervised deep learning-based foreign object detection algorithms are tedious, costly, and time-consuming because they usually require a large number of training datasets and annotations. These disadvantages make them frequently unsuitable for food quality evaluation and food manufacturing processes. However, the deep learning-based foreign object detection algorithm is an effective method to overcome the disadvantages of conventional foreign object detection methods mainly used in food inspection. For example, color sorter machines cannot detect foreign objects with a color similar to food, and the performance is easily degraded by changes in illuminance. Therefore, to detect foreign objects, we use a deep learning-based foreign object detection algorithm (model). In this paper, we present a synthetic method to efficiently acquire a training dataset of deep learning that can be used for food quality evaluation and food manufacturing processes. Moreover, we perform data augmentation using color jitter on a synthetic dataset and show that this approach significantly improves the illumination invariance features of the model trained on synthetic datasets. The F1-score of the model that trained the synthetic dataset of almonds at 360 lux illumination intensity achieved a performance of 0.82, similar to the F1-score of the model that trained the real dataset. Moreover, the F1-score of the model trained with the real dataset combined with the synthetic dataset achieved better performance than the model trained with the real dataset in the change of illumination. In addition, compared with the traditional method of using color sorter machines to detect foreign objects, the model trained on the synthetic dataset has obvious advantages in accuracy and efficiency. These results indicate that the synthetic dataset not only competes with the real dataset, but they also complement each other.

Funder

Ministry of Food and Drug Safety

DGIST research grant

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3