Monitoring Potato Waste in Food Manufacturing Using Image Processing and Internet of Things Approach

Author:

Jagtap Sandeep,Bhatt Chintan,Thik Jaydeep,Rahimifard Shahin

Abstract

Approximately one-third of the food produced globally is spoiled or wasted in the food supply chain (FSC). Essentially, it is lost before it even reaches the end consumer. Conventional methods of food waste tracking relying on paper-based logs to collect and analyse the data are costly, laborious, and time-consuming. Hence, an automated and real-time system based on the Internet of Things (IoT) concepts is proposed to measure the overall amount of waste as well as the reasons for waste generation in real-time within the potato processing industry, by using modern image processing and load cell technologies. The images captured through a specially positioned camera are processed to identify the damaged, unusable potatoes, and a digital load cell is used to measure their weight. Subsequently, a deep learning architecture, specifically the Convolutional Neural Network (CNN), is utilised to determine a potential reason for the potato waste generation. An accuracy of 99.79% was achieved using a small set of samples during the training test. We were successful enough to achieve a training accuracy of 94.06%, a validation accuracy of 85%, and a test accuracy of 83.3% after parameter tuning. This still represents a significant improvement over manual monitoring and extraction of waste within a potato processing line. In addition, the real-time data generated by this system help actors in the production, transportation, and processing of potatoes to determine various causes of waste generation and aid in the implementation of corrective actions.

Funder

Engineering and Physical Sciences Research Council

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference29 articles.

1. Estimates of Food Surplus and Waste Arisings in the UKhttp://www.wrap.org.uk/sites/files/wrap/Estimates_%20in_the_UK_Jan17.pdf

2. Current Trends in Green Technologies in Food Production and Processing

3. VALUING OUR FOOD: MINIMIZING WASTE AND OPTIMIZING RESOURCES

4. World Economic and Social Survey 2013—Sustainable Development Challengeshttps://sustainabledevelopment.un.org/content/documents/2843WESS2013.pdf

5. Sustainable development and the water–energy–food nexus: A perspective on livelihoods

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3