Reinforcement Learning with Dynamic Movement Primitives for Obstacle Avoidance

Author:

Li AngORCID,Liu Zhenze,Wang WenruiORCID,Zhu Mingchao,Li Yanhui,Huo Qi,Dai Ming

Abstract

Dynamic movement primitives (DMPs) are a robust framework for movement generation from demonstrations. This framework can be extended by adding a perturbing term to achieve obstacle avoidance without sacrificing stability. The additional term is usually constructed based on potential functions. Although different potentials are adopted to improve the performance of obstacle avoidance, the profiles of potentials are rarely incorporated into reinforcement learning (RL) framework. In this contribution, we present a RL based method to learn not only the profiles of potentials but also the shape parameters of a motion. The algorithm employed is PI2 (Policy Improvement with Path Integrals), a model-free, sampling-based learning method. By using the PI2, the profiles of potentials and the parameters of the DMPs are learned simultaneously; therefore, we can optimize obstacle avoidance while completing specified tasks. We validate the presented method in simulations and with a redundant robot arm in experiments.

Funder

Chinese Academy of Sciences cooperation in science and technology high-tech industrialization special funds project

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3