UAV Path Planning Based on Improved Artificial Potential Field Method

Author:

Hao Guoqiang1,Lv Qiang1,Huang Zhen1,Zhao Huanlong1,Chen Wei1

Affiliation:

1. School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430048, China

Abstract

The obstacle avoidance system of a drone affects the quality of its flight path. The artificial potential field method can react quickly when facing obstacles; however, the traditional artificial potential field method lacks consideration of the position information between drones and obstacles during flight, issues including local minima, unreachable targets, and unreasonable obstacle avoidance techniques that lengthen flight times and consume more energy get encountered. Therefore, an improved artificial potential field method is proposed. First, a collision risk assessment mechanism was introduced to avoid unreasonable obstacle avoidance actions and reduce the length of unmanned aerial vehicle flight paths. Then, to solve the problem of local minimum values and unreachable targets, a virtual sub-target was set up and the traditional artificial potential field model was modified to enable the drone to avoid obstacles and reach the target point. At the same time, a virtual sub-target evaluation factor was set up to determine the reasonable virtual sub-target, to achieve a reasonable obstacle avoidance path compared to the traditional artificial potential field method. The proposed algorithm can plan a reasonable path, reduce energy consumption during flight, reduce drone turning angle changes in the path, make the path smoother, and can also be applied in complex environments.

Funder

The National Natural Science Foundation of China

the PetroChina Innovation Foundation

the Marine Defense Technology Innovation Center Innovation Fund

Publisher

MDPI AG

Subject

Aerospace Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3