A Cooperative Game Hybrid Optimization Algorithm Applied to UAV Inspection Path Planning in Urban Pipe Corridors

Author:

Wang Chuanyue1,Zhang Lei1,Gao Yifan1,Zheng Xiaoyuan1,Wang Qianling1

Affiliation:

1. School of Artificial Intelligence and Data Science, Hebei University of Technology, Tianjin 300132, China

Abstract

This paper proposes an improved algorithm applied to path planning for the inspection of unmanned aerial vehicles (UAVs) in urban pipe corridors, which introduces a collaborative game between spherical vector particle swarm optimization (SPSO) and differential evolution (DE) algorithms. Firstly, a high-precision 3D grid map model of urban pipe corridors is constructed based on the actual urban situation. Secondly, the cost function is formulated, and the constraints for ensuring the safe and smooth inspection of UAVs are proposed to transform path planning into an optimization problem. Finally, a hybrid algorithm of SPSO and DE algorithms based on the Nash bargaining theory is proposed by introducing a cooperative game model for optimizing the cost function to plan the optimal path of UAV inspection in complex urban pipe corridors. To evaluate the performance of the proposed algorithm (GSPSODE), the SPSO, DE, genetic algorithm (GA), and ant colony optimization (ACO) are compared with GSPSODE, and the results show that GSPSODE is superior to other methods in UAV inspection path planning. However, the selection of algorithm parameters, the difference in the experimental environment, and the randomness of experimental results may affect the accuracy of experimental results. In addition, a high-precision urban pipe corridors scenario is constructed based on the RflySim platform to dynamically simulate the optimal path planning of UAV inspection in real urban pipe corridors.

Funder

S&T Program of Hebei

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3