Investigation of X-ray Radiation Detectability Using Fabricated ZnO-PB Based Extended Gate Field-Effect Transistor as X-ray Dosimeters

Author:

Ahmed Ali Amal Mohamed,Ahmed Naser M.ORCID,Kabir Norlaili A.,Ali Mohammed Khalil Mohammed,Akhdar HananORCID,Aldaghri Osamah A.ORCID,Ibnaouf Khalid Hassan,Sulieman AbdelmoneimORCID

Abstract

A new design of the MOSFET dosimeter is being developed in a different study to measure the dose delivered to the tissue layers. Development of zinc oxide-Lead (ZnO-Pb) of different thicknesses fabricated by chemical bath deposition were investigated to study their sensitivity following irradiation using a low absorbed dose that can be used in diagnostic and interventional radiology (9, 36.5, and 70 mGy) and high absorbed dose (1, 5, and 10 Gy) of X-ray. The morphology and structure of the as-prepared films were analysed using FESEM and XRD measurements. The device relies on sensing the changes in the local electric field arising from radiation interactions in the absorber, coupled with the semiconductor materials used in this work—ZnO-Pb as the EGFET. Then the sensitivity of all devices was examined. Generally, thin-film devices showed less sensitivity to X-ray than the disk type. The sensitivity of the thin film dropped from 6.66 mV/to 1.42 mV/Gy, while the sensitivity of the ZnO-Pb disk type was 23.3 mV/Gy, which then dropped to 6.30 6.42 mV/Gy. Furthermore, the disk type ZnO-Pb was exposed to a high absorbed dose and obtained a sensitivity value of 0.08 mV/Gy, while the ZnO-Pb thin film obtained 0.01 mV/Gy. This can be related to the influence of thickness on the sensitivity of the dosimeter. However, the device’s performance characteristics, like sensitivity to radiation exposure and operating dose area, were discovered to be strongly dependent on the materials employed, effective atomic number, and thickness of the materials. Based on the results shown above, these devices might be considered a low-cost candidate for real-time -radiation dosimetry at room temperature. Furthermore, the thickest sample of 1 mm showed better sensitivity to radiation, compared to the thinner samples.

Funder

Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3