PM2.5 Concentration Prediction Based on LightGBM Optimized by Adaptive Multi-Strategy Enhanced Sparrow Search Algorithm

Author:

Liu Xuehu1,Zhao Kexin1,Liu Zuhan1,Wang Lili2

Affiliation:

1. School of Information Engineering, Nanchang Institute of Technology, Nanchang 330099, China

2. College of Science, Nanchang Institute of Technology, Nanchang 330099, China

Abstract

The atmospheric environment is of great importance to human health. However, its influencing factors are complex and variable. An efficient technique is required to more precisely estimate PM2.5 concentration values. In this paper, an enhanced Sparrow Search Algorithm (LASSA)-optimized Light Gradient Boosting Machine (LightGBM) is proposed for PM2.5 concentration prediction. This approach can provide accurate predictions while also reducing potential losses resulting from unexpected events. LightGBM is regarded as an outstanding machine learning approach; however, it includes hyperparameters that must be optimally mixed in order to achieve the desired results. We update the Sparrow Search Algorithm (SSA) and utilize it to identify the optimal combination of the most crucial parameters, using cross-validation to increase the reliability. Using limited air quality data and meteorological data as inputs, PM2.5 concentration values were predicted. The LASSA-LGB’s output was compared to normal LGB, SSA-LGB and ISSA-LGB. The findings demonstrate that LASSA-LGB outperforms the other models in terms of prediction accuracy. The RMSE and MAPE error indices were lowered from 3% to 16%. The concordance correlation coefficient is not less than 0.91, and the R2 reached 0.96. This indicates that the proposed model has potential advantages in the field of PM2.5 concentration prediction.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3