Linking climate and air quality over Europe: effects of meteorology on PM<sub>2.5</sub> concentrations

Author:

Megaritis A. G.,Fountoukis C.ORCID,Charalampidis P. E.,Denier van der Gon H. A. C.ORCID,Pilinis C.,Pandis S. N.

Abstract

Abstract. The effects of various meteorological parameters such as temperature, wind speed, absolute humidity, precipitation and mixing height on PM2.5 concentrations over Europe were examined using a three-dimensional chemical transport model, PMCAMx-2008. Our simulations covered three periods, representative of different seasons (summer, winter, and fall). PM2.5 appears to be more sensitive to temperature changes compared to the other meteorological parameters in all seasons. PM2.5 generally decreases as temperature increases, although the predicted changes vary significantly in space and time, ranging from −700 ng m−3 K−1 (−8% K−1) to 300 ng m−3 K−1 (7% K−1). The predicted decreases of PM2.5 are mainly due to evaporation of ammonium nitrate, while the higher biogenic emissions and the accelerated gas-phase reaction rates increase the production of organic aerosol (OA) and sulfate, having the opposite effect on PM2.5. The predicted responses of PM2.5 to absolute humidity are also quite variable, ranging from −130 ng m−3 %−1 (−1.6% %−1) to 160 ng m−3 %−1 (1.6% %−1) dominated mainly by changes in inorganic PM2.5 species. An increase in absolute humidity favors the partitioning of nitrate to the aerosol phase and increases the average PM2.5 during summer and fall. Decreases in sulfate and sea salt levels govern the average PM2.5 response to humidity during winter. A decrease of wind speed (keeping the emissions constant) increases all PM2.5 species (on average 40 ng m−3 %−1) due to changes in dispersion and dry deposition. The wind speed effects on sea salt emissions are significant for PM2.5 concentrations over water and in coastal areas. Increases in precipitation have a negative effect on PM2.5 (decreases up to 110 ng m−3 %−1) in all periods due to increases in wet deposition of PM2.5 species and their gas precursors. Changes in mixing height have the smallest effects (up to 35 ng m−3 %−1) on PM2.5 . Regarding the relative importance of each of the meteorological parameters in a changed future climate, the projected changes in precipitation are expected to have the largest impact on PM2.5 levels during all periods (changes up to 2 μg m−3 in the fall). The expected effects in future PM2.5 levels due to wind speed changes are similar in all seasons and quite close to those resulting from future precipitation changes (up to 1.4 μg m−3). The expected increases in absolute humidity in the future can lead to large changes in PM2.5 levels (increases up to 2 μg m−3) mainly in the fall due to changes in particulate nitrate levels. Despite the high sensitivity of PM2.5 levels to temperature, the small expected increases of temperature in the future will lead to modest PM2.5 changes and will not dominate the overall change.

Funder

European Commission

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3