Air Quality Class Prediction Using Machine Learning Methods Based on Monitoring Data and Secondary Modeling

Author:

Liu Qian1ORCID,Cui Bingyan2ORCID,Liu Zhen3ORCID

Affiliation:

1. The College of Electrical Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China

2. Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA

3. The Thomas D. Larson Pennsylvania Transportation Institute, The Pennsylvania State University, University Park, PA 16802, USA

Abstract

Addressing the constraints inherent in traditional primary Air Quality Index (AQI) forecasting models and the shortcomings in the exploitation of meteorological data, this research introduces a novel air quality prediction methodology leveraging machine learning and the enhanced modeling of secondary data. The dataset employed encompasses forecast data on primary pollutant concentrations and primary meteorological conditions, alongside actual meteorological observations and pollutant concentration measurements, spanning from 23 July 2020 to 13 July 2021, sourced from long-term air quality projections at various monitoring stations within Jinan, China. Initially, through a rigorous correlation analysis, ten meteorological factors were selected, comprising both measured and forecasted data across five categories each. Subsequently, the significance of these ten factors was assessed and ranked based on their impact on different pollutant concentrations, utilizing a combination of univariate and multivariate significance analyses alongside a random forest approach. Seasonal characteristic analysis highlighted the distinct seasonal impacts of temperature, humidity, air pressure, and general atmospheric conditions on the concentrations of six key air pollutants. The performance evaluation of various machine learning-based classification prediction models revealed the Light Gradient Boosting Machine (LightGBM) classifier as the most effective, achieving an accuracy rate of 97.5% and an F1 score of 93.3%. Furthermore, experimental results for AQI prediction indicated the Long Short-Term Memory (LSTM) model as superior, demonstrating a goodness-of-fit of 91.37% for AQI predictions, 90.46% for O3 predictions, and a perfect fit for the primary pollutant test set. Collectively, these findings affirm the reliability and efficacy of the employed machine learning models in air quality forecasting.

Publisher

MDPI AG

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3