Long-Term Dynamics of Different Surface Water Body Types and Their Possible Driving Factors in China

Author:

Yu Bowei,Cui Baoshan,Zang Yongge,Wu Chunsheng,Zhao Zhonghe,Wang Youxiao

Abstract

Various surface water bodies, such as rivers, lakes and reservoirs, provide water and essential services to human society. However, the long-term spatiotemporal dynamics of different types of surface water bodies and their possible driving factors over large areas remain very limited. Here, we used unprecedented surface water data layers derived from all available Landsat images and further developed two databases on China’s lakes and reservoirs larger than 1 km2 to document and understand the characteristics of changes in different water body types during 2000 to 2019 in China. Our results show that China is dominated by permanent water bodies. The areas of permanent and seasonal water bodies in China increased by 16,631.02 km2 (16.72%) and 16,994.95 km2 (25.14%), respectively, between 2000 and 2019, with permanent and seasonal water bodies exhibiting divergent spatial variations. Lakes and artificial reservoirs larger than 1 km2, which collectively represent a significant proportion of the permanent water bodies in China, displayed net increases of 6884.52 km2 (10.71%) and 4075.13 km2 (36.10%), respectively, from 2000 to 2019; these increases accounted for 41.40% and 24.50%, respectively, of the total permanent water body increment. The expanding lakes were mainly distributed on the Tibetan Plateau, whereas the rapidly growing reservoirs were mainly located on the Northeast Plain and Eastern Plain. Statistical analyses indicated that artificial reservoirs were an important factor controlling both permanent and seasonal water body changes in most of provinces. Climate factors, such as precipitation and temperature, were the main influencing factors affecting the changes in different water bodies in the sparsely populated Tibetan Plateau.

Funder

This work was funded by Key Project of National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3