Building Damage Detection Based on OPCE Matching Algorithm Using a Single Post-Event PolSAR Data

Author:

Nie Yuliang,Zeng QimingORCID,Zhang Haizhen,Wang Qing

Abstract

Synthetic aperture radar (SAR) is an effective tool in detecting building damage. At present, more and more studies detect building damage using a single post-event fully polarimetric SAR (PolSAR) image, because it permits faster and more convenient damage detection work. However, the existence of non-buildings and obliquely-oriented buildings in disaster areas presents a challenge for obtaining accurate detection results using only post-event PolSAR data. To solve these problems, a new method is proposed in this work to detect completely collapsed buildings using a single post-event full polarization SAR image. The proposed method makes two improvements to building damage detection. First, it provides a more effective solution for non-building area removal in post-event PolSAR images. By selecting and combining three competitive polarization features, the proposed solution can remove most non-building areas effectively, including mountain vegetation and farmland areas, which are easily confused with collapsed buildings. Second, it significantly improves the classification performance of collapsed and standing buildings. A new polarization feature was created specifically for the classification of obliquely-oriented and collapsed buildings via development of the optimization of polarimetric contrast enhancement (OPCE) matching algorithm. Using this developed feature combined with texture features, the proposed method effectively distinguished collapsed and obliquely-oriented buildings, while simultaneously also identifying the affected collapsed buildings in error-prone areas. Experiments were implemented on three PolSAR datasets obtained in fully polarimetric mode: Radarsat-2 PolSAR data from the 2010 Yushu earthquake in China (resolution: 12 m, scale of the study area: 50 km2); ALOS PALSAR PolSAR data from the 2011 Tohoku tsunami in Japan (resolution: 23.14 m, scale of the study area: 113 km2); and ALOS-2 PolSAR data from the 2016 Kumamoto earthquake in Japan (resolution: 5.1 m, scale of the study area: 5 km2). Through the experiments, the proposed method was proven to obtain more than 90% accuracy for built-up area extraction in post-event PolSAR data. The achieved detection accuracies of building damage were 82.3%, 97.4%, and 78.5% in Yushu, Ishinomaki, and Mashiki town study sites, respectively.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3