BDD-Net: An End-to-End Multiscale Residual CNN for Earthquake-Induced Building Damage Detection

Author:

Seydi Seyd TeymoorORCID,Rastiveis HeidarORCID,Kalantar BaharehORCID,Halin Alfian AbdulORCID,Ueda Naonori

Abstract

Building damage maps can be generated from either optical or Light Detection and Ranging (Lidar) datasets. In the wake of a disaster such as an earthquake, a timely and detailed map is a critical reference for disaster teams in order to plan and perform rescue and evacuation missions. Recent studies have shown that, instead of being used individually, optical and Lidar data can potentially be fused to obtain greater detail. In this study, we explore this fusion potential, which incorporates deep learning. The overall framework involves a novel End-to-End convolutional neural network (CNN) that performs building damage detection. Specifically, our building damage detection network (BDD-Net) utilizes three deep feature streams (through a multi-scale residual depth-wise convolution block) that are fused at different levels of the network. This is unlike other fusion networks that only perform fusion at the first and the last levels. The performance of BDD-Net is evaluated under three different phases, using optical and Lidar datasets for the 2010 Haiti Earthquake. The three main phases are: (1) data preprocessing and building footprint extraction based on building vector maps, (2) sample data preparation and data augmentation, and (3) model optimization and building damage map generation. The results of building damage detection in two scenarios show that fusing the optical and Lidar datasets significantly improves building damage map generation, with an overall accuracy (OA) greater than 88%.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3