Building Damage Assessment Based on the Fusion of Multiple Texture Features Using a Single Post-Earthquake PolSAR Image

Author:

Zhai Wei,Huang ChunlinORCID,Pei Wansheng

Abstract

After a destructive earthquake, most of the casualties are brought about by building collapse. Our work is focused on using a single postevent PolSAR (full-polarimetric synthetic aperture radar) imagery to extract the building damage information for effective emergency decision-making. PolSAR data is subject to sunlight and contains richer backscatter information. The undamaged buildings whose orientation is not parallel to the SAR flight pass and the collapsed buildings share similar dominated scattering mechanisms, i.e., volume scattering, so they are easily confused. However, the two kinds of buildings have different textures. For a more accurate classification of damaged buildings and undamaged buildings, the OPCE (optimization of polarimetric contrast enhancement) algorithm is employed to enhance the contrast ratio of the textures for the two kinds of buildings and the precision-weighted multifeature fusion (PWMF) method is proposed to merge the multiple texture features. The experiment results show that the accuracy of the proposed novel method is improved by 8.34% compared to the traditional method. In general, the proposed PWMF method can effectively merge the multiple features and the overestimation of the building collapse rate can be reduced using the proposed method in this study.

Funder

Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3