Earthquake-induced building damage recognition from unmanned aerial vehicle remote sensing using scale-invariant feature transform characteristics and support vector machine classification

Author:

Zhang Ying1ORCID,Guo Hongmei1,Yin Wengang2,Zhao Zhen1,Lu Changjiang1

Affiliation:

1. Sichuan Earthquake Administration, Chengdu, China

2. Officers College of People’s Armed Police, Chengdu, China

Abstract

Building damage is the main cause of casualties and economic losses from earthquakes. Therefore, understanding building damage is critical for emergency handling. Current information acquisition methods for assessing earthquake damage using unmanned aerial vehicle (UAV) remote sensing systems offer great flexibility and high efficiency with the capability to obtain high-resolution images, which can reflect actual damage to affected areas intuitively. Consequently, UAV remote sensing has become a convenient and important means to acquire earthquake-induced building damage information. Although manual visual interpretation can achieve high recognition accuracy, it is extremely time-consuming. In contrast, although current automatic recognition methods require less time, they have relatively poor recognition accuracy. Neither approach can satisfactorily simultaneously meet efficiency and accuracy requirements for earthquake emergency handling. This article applies image classification algorithms based on the support vector machine (SVM) to earthquake-induced building damage recognition, and proposes a recognition method based on scale-invariant feature transform (SIFT) characteristics and SVM classification. We use the magnitude 6.4 earthquake at Yangbi (2021) as an example to validate the proposed method. Results verify that the proposed method can recognize earthquake damage quickly and accurately, providing effective support for decision-making regarding rescue actions.

Funder

Key Research and Development Plan of Sichuan Province

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

SAGE Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3