Abstract
Molybdenum disulfide (MoS2) is the most well-known transition metal chalcogenide for lithium storage applications because of its simple preparation process, superior optical, physical, and electrical properties, and high stability. However, recent research has shown that bare MoS2 nanosheet (NS) can be reformed to the bulk structure, and sulfur atoms can be dissolved in electrolytes or form polymeric structures, thereby preventing lithium insertion/desertion and reducing cycling performance. To enhance the electrochemical performance of the MoS2 NSs, B2O3 nanoparticles were decorated on the surface of MoS2 NSs via a sintering technique. The structure of B2O3 decorated MoS2 changed slightly with the formation of a lattice spacing of ~7.37 Å. The characterization of materials confirmed the formation of B2O3 crystals at 30% weight percentage of H3BO3 starting materials. In particular, the MoS2_B3 sample showed a stable capacity of ~500 mAh·g−1 after the first cycle. The cycling test delivered a high reversible specific capacity of ~82% of the second cycle after 100 cycles. Furthermore, the rate performance also showed a remarkable recovery capacity of ~98%. These results suggest that the use of B2O3 decorations could be a viable method for improving the stability of anode materials in lithium storage applications.
Funder
Korea Basic Science Institute
Ministry of Education
Subject
General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献