Atomic Layer Deposition of Chlorine Containing Titanium–Zinc Oxide Nanofilms Using the Supercycle Approach

Author:

Nazarov Denis12ORCID,Kozlova Lada1,Rudakova Aida1ORCID,Zemtsova Elena1,Yudintceva Natalia3ORCID,Ovcharenko Elizaveta3,Koroleva Alexandra1,Kasatkin Igor1ORCID,Kraeva Ludmila4ORCID,Rogacheva Elizaveta4,Maximov Maxim2ORCID

Affiliation:

1. Saint Petersburg State University, Universitetskaya Nab., 7/9, Saint Petersburg 199034, Russia

2. Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, Saint Petersburg 195221, Russia

3. Institute of Cytology of the Russian Academy of Sciences (RAS), Tikhoretsky Ave., 4, Saint Petersburg 194064, Russia

4. Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, Saint Petersburg 197101, Russia

Abstract

Atomic layer deposition (ALD) is a useful tool for producing ultrathin films and coatings of complex composition with high thickness control for a wide range of applications. In this study, the growth of zinc–titanium oxide nanofilms was investigated. Diethyl zinc, titanium tetrachloride, and water were used as precursors. The supercycle approach was used, and wide ZnO/TiO2 (ZTO) ALD cycles were prepared: 5/1, 3/1, 2/1, 1/1, 1/2, 1/3, 1/5, 1/10, 1/20. Spectral ellipsometry, X-ray reflectometry, X-ray diffraction, scanning electron microscopy, SEM-EDX, and contact angle measurements were used to characterize the thickness, morphology, and composition of the films. The results show that the thicknesses of the coatings differ considerably from those calculated using the rule of mixtures. At high ZnO/TiO2 ratios, the thickness is much lower than expected and with increasing titanium oxide content the thickness increases significantly. The surface of the ZTO samples contains a significant amount of chlorine in the form of zinc chloride and an excessive amount of titanium. The evaluation of the antibacterial properties showed significant activity of the ZTO–1/1 sample against antibiotic-resistant strains and no negative effect on the morphology and adhesion of human mesenchymal stem cells. These results suggest that by tuning the surface composition of ALD-derived ZTO samples, it may be possible to obtain a multi-functional material for use in medical applications.

Funder

Russian Science Foundation

Saint Petersburg State University

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3