Atomic Layer Deposition of Antibacterial Nanocoatings: A Review

Author:

Nazarov Denis12ORCID,Kozlova Lada2,Rogacheva Elizaveta3,Kraeva Ludmila3ORCID,Maximov Maxim1ORCID

Affiliation:

1. Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195221 Saint Petersburg, Russia

2. Saint Petersburg State University, Universitetskaya Nab, 7/9, 199034 Saint Petersburg, Russia

3. Saint-Petersburg Pasteur Institute of Epidemiology and Microbiology, 14 Mira Street, 197101 Saint Petersburg, Russia

Abstract

In recent years, antibacterial coatings have become an important approach in the global fight against bacterial pathogens. Developments in materials science, chemistry, and biochemistry have led to a plethora of materials and chemical compounds that have the potential to create antibacterial coatings. However, insufficient attention has been paid to the analysis of the techniques and technologies used to apply these coatings. Among the various inorganic coating techniques, atomic layer deposition (ALD) is worthy of note. It enables the successful synthesis of high-purity inorganic nanocoatings on surfaces of complex shape and topography, while also providing precise control over their thickness and composition. ALD has various industrial applications, but its practical application in medicine is still limited. In recent years, a considerable number of papers have been published on the proposed use of thin films and coatings produced via ALD in medicine, notably those with antibacterial properties. The aim of this paper is to carefully evaluate and analyze the relevant literature on this topic. Simple oxide coatings, including TiO2, ZnO, Fe2O3, MgO, and ZrO2, were examined, as well as coatings containing metal nanoparticles such as Ag, Cu, Pt, and Au, and mixed systems such as TiO2-ZnO, TiO2-ZrO2, ZnO-Al2O3, TiO2-Ag, and ZnO-Ag. Through comparative analysis, we have been able to draw conclusions on the effectiveness of various antibacterial coatings of different compositions, including key characteristics such as thickness, morphology, and crystal structure. The use of ALD in the development of antibacterial coatings for various applications was analyzed. Furthermore, assumptions were made about the most promising areas of development. The final section provides a comparison of different coatings, as well as the advantages, disadvantages, and prospects of using ALD for the industrial production of antibacterial coatings.

Funder

Ministry of Science and Higher Education of the Russian Federation as part of the World-class Research Center program: Advanced Digital Technologies

Russian Science Foundation

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Microbiology (medical),General Pharmacology, Toxicology and Pharmaceutics,Biochemistry,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3