An Antimicrobial Copper–Plastic Composite Coating: Characterization and In Situ Study in a Hospital Environment

Author:

Emelyanenko Alexandre M.1ORCID,Omran Fadi S.1,Teplonogova Maria A.2ORCID,Chernukha Marina Y.13ORCID,Avetisyan Lusine R.13ORCID,Tselikina Eugenia G.3ORCID,Putsman Gleb A.14,Zyryanov Sergey K.15,Butranova Olga I.15,Emelyanenko Kirill A.1ORCID,Boinovich Ludmila B.1ORCID

Affiliation:

1. A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky Prospect 31, 119071 Moscow, Russia

2. N. S. Kurnakov Institute of General and Inorganic Chemistry, Leninsky Prospect 31, 119071 Moscow, Russia

3. Department of Medical Microbiology, Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, 18 Gamaleya St., 123098 Moscow, Russia

4. City Clinical Hospital No. 24, Moscow City Health Department, 10 Pistsovaya St., 127015 Moscow, Russia

5. Department of General and Clinical Pharmacology, Institute of Medicine, Peoples’ Friendship University of Russia named after Patrice Lumumba, 6 Miklukho-Maklaya St. 117198 Moscow, Russia

Abstract

A method has been proposed for creating an operationally durable copper coating with antimicrobial properties for the buttons of electrical switches based on the gas dynamic spray deposition of copper on acrylonitrile butadiene styrene (ABS) plastic. It is shown that during the coating process, a polymer film is formed on top of the copper layer. Comparative in situ studies of microbial contamination have shown that the copper-coated buttons have a significant antimicrobial effect compared to standard buttons. Analysis of swabs over a 22-week study in a hospital environment showed that the frequency of contamination for a copper-coated button with various microorganisms was 2.7 times lower than that of a control button. The presented results allow us to consider the developed copper coating for plastic switches an effective alternative method in the fight against healthcare-associated infections.

Funder

Russian Science Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3