Nanostructures on Sapphire Surfaces Induced by Metal Impurity Assisted Ion Beam

Author:

Bi Qian,Chen Zhili,Liu Yuzhao,Tang Li,Xi Yingxue,Liu WeiguoORCID

Abstract

The metal impurity assisted ion beam technology has shown its uniqueness and effectiveness in the formation and precise control of nanostructures on the surface of materials. Hence, the investigation in this area is vital. The morphology evolution of self-organized nanostructures induced by Fe co-deposition assisted Ar+ ion beam sputtering at a different distance from the impurity target was investigated on sapphire, using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). We also investigated the role of metal impurities on sapphire ripple formation. Experiments were carried out at an oblique angle of incidence 65° with constant ion beam current density 487 μA/cm2 and the erosion duration of 60 min at room temperature (20 °C). The introduction of Fe impurity increased the longitudinal height and roughness of the surface nanostructures. Moreover, the amounts of Fe deposited on the surface decreased with increasing distance, and the morphology of the smooth sapphire surface demonstrated a strong distance dependence. Differences in surface morphology were attributed to changes in metal impurity concentration. With an increase of impurity target distance, island-like structures gradually evolved into continuous ripples. At the same time, the orderliness of nanostructures was enhanced, the longitudinal height gradually decreased, while the spatial frequency was unchanged. In addition, there were very few metal impurities on the etched sample. During the ion beam sputtering process, island-like structures promoted the growth of ripples but destroyed their orderliness.

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3